Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
J Biol Chem ; 298(10): 102454, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063993

RESUMO

Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.


Assuntos
Domínio Catalítico , Peptídeo Sintases , Yersinia pestis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sideróforos/metabolismo , Yersinia pestis/química , Yersinia pestis/enzimologia
2.
Genes (Basel) ; 11(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679707

RESUMO

Itaconic acid is an immunoregulatory metabolite produced by macrophages in response to pathogen invasion. It also exhibits antibacterial activity because it is an uncompetitive inhibitor of isocitrate lyase, whose activity is required for the glyoxylate shunt to be operational. Some bacteria, such as Yersinia pestis, encode enzymes that can degrade itaconic acid and therefore eliminate this metabolic inhibitor. Studies, primarily with Salmonella enterica subspecies enterica serovar Typhimurium, have demonstrated the presence of similar genes in this pathogen and the importance of these genes for the persistence of the pathogen in murine hosts. This minireview demonstrates that, based on Blast searches of 1063 complete Salmonella genome sequences, not all Salmonella serovars possess these genes. It is also shown that the growth of Salmonella isolates that do not possess these genes is sensitive to the acid under glucose-limiting conditions. Interestingly, most of the serovars without the three genes, including serovar Typhi, harbor DNA at the corresponding genomic location that encodes two open reading frames that are similar to bacteriocin immunity genes. It is hypothesized that these genes could be important for Salmonella that finds itself in strong competition with other Enterobacteriacea in the intestinal tract-for example, during inflammation.


Assuntos
Bacteriocinas/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Succinatos/metabolismo , Animais , Bacteriocinas/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Intestinos/microbiologia , Isocitrato Liase/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Salmonella enterica/enzimologia , Salmonella enterica/imunologia , Succinatos/imunologia , Yersinia pestis/enzimologia
3.
Curr Comput Aided Drug Des ; 16(3): 327-339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32507104

RESUMO

BACKGROUND: The relatedness between the linear equations of thermodynamics and QSAR was studied thanks to the recently elucidated crystal structure complexes between sulfonamide pterin conjugates and dihydropteroate synthase (DHPS) together with a published set of thirty- six synthetic dapsone derivatives with their reported entropy-driven activity data. Only a few congeners were slightly better than dapsone. OBJECTIVE: Our study aimed at demonstrating the applicability of thermodynamic QSAR and to shed light on the mechanistic aspects of sulfone binding to DHPS. METHODS: To this end ligand docking to DHPS, quantum mechanical properties, 2D- and 3D-QSAR as well as Principle Component Analysis (PCA) were carried out. RESULTS: The short aryl substituents of the docked pterin-sulfa conjugates were outward oriented into the solvent space without interacting with target residues which explains why binding enthalpy (ΔH) did not correlate with potency. PCA revealed how chemically informative descriptors are evenly loaded on the first three PCs (interpreted as ΔG, ΔH and ΔS), while chemically cryptic ones reflected higher dimensional (complex) loadings. CONCLUSION: It is safe to utter that synthesis efforts to introduce short side chains for aryl derivatization of the dapsone scaffold have failed in the past. On theoretical grounds we provide computed evidence why dapsone is not a pharmacodynamic lead for drug profiling because enthalpic terms do not change significantly at the moment of ligand binding to target.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dapsona/análogos & derivados , Dapsona/farmacologia , Di-Hidropteroato Sintase/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peste/tratamento farmacológico , Peste/microbiologia , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/enzimologia
4.
Protein Sci ; 29(7): 1618-1628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306515

RESUMO

Protein degradation by aminopeptidases is involved in bacterial responses to stress. Escherichia coli produces two metal-dependent M17 family leucine aminopeptidases (LAPs), aminopeptidase A (PepA) and aminopeptidase B (PepB). Several structures have been solved for PepA as well as other bacterial M17 peptidases. Herein, we report the first structures of a PepB M17 peptidase. The E. coli PepB protein structure was determined at a resolution of 2.05 and 2.6 Å. One structure has both Zn2+ and Mn2+ , while the second structure has two Zn2+ ions bound to the active site. A 2.75 Å apo structure is also reported for PepB from Yersinia pestis. Both proteins form homohexamers, similar to the overall arrangement of PepA and other M17 peptidases. However, the divergent N-terminal domain in PepB is much larger resulting in a tertiary structure that is more expanded. Modeling of a dipeptide substrate into the C-terminal LAP domain reveals contacts that account for PepB to uniquely cleave after aspartate.


Assuntos
Aminopeptidases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Manganês/química , Yersinia pestis/enzimologia , Zinco/química , Cristalografia por Raios X , Domínios Proteicos
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 608-615, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475928

RESUMO

Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Šresolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.


Assuntos
UTP-Glucose-1-Fosfato Uridililtransferase/química , Yersinia pestis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Peste/tratamento farmacológico , Conformação Proteica
6.
PLoS Negl Trop Dis ; 13(6): e0007449, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170147

RESUMO

We have previously shown that the cell morphogenesis NlpD lipoprotein is essential for virulence of the plague bacteria, Yersinia pestis. To elucidate the role of NlpD in Y. pestis pathogenicity, we conducted a whole-genome comparative transcriptome analysis of the wild-type Y. pestis strain and an nlpD mutant under conditions mimicking early stages of infection. The analysis suggested that NlpD is involved in three phenomena: (i) Envelope stability/integrity evidenced by compensatory up-regulation of the Cpx and Psp membrane stress-response systems in the mutant; (ii) iron acquisition, supported by modulation of iron metabolism genes and by limited growth in iron-deprived medium; (iii) activity of the twin-arginine (Tat) system, which translocates folded proteins across the cytoplasmic membrane. Virulence studies of Y. pestis strains mutated in individual Tat components clearly indicated that the Tat system is central in Y. pestis pathogenicity and substantiated the assumption that NlpD essentiality in iron utilization involves the activity of the Tat system. This study reveals a new role for NlpD in Tat system activity and iron assimilation suggesting a modality by which this lipoprotein is involved in Y. pestis pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Ferro/metabolismo , Lipoproteínas/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Fatores de Virulência/metabolismo , Yersinia pestis/enzimologia , Yersinia pestis/metabolismo , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Camundongos , Fatores de Virulência/genética , Yersinia pestis/genética
7.
Int J Biol Macromol ; 136: 1176-1187, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31207330

RESUMO

The de novo pyrimidine biosynthesis pathway is essential for the proliferation of many pathogens. One of the pathway enzymes, dihydroorotase (DHO), catalyzes the reversible interconversion of N-carbamoyl-l-aspartate to 4,5-dihydroorotate. The substantial difference between bacterial and mammalian DHOs makes it a promising drug target for disrupting bacterial growth and thus an important candidate to evaluate as a response to antimicrobial resistance on a molecular level. Here, we present two novel three-dimensional structures of DHOs from Yersinia pestis (YpDHO), the plague-causing pathogen, and Vibrio cholerae (VcDHO), the causative agent of cholera. The evaluations of these two structures led to an analysis of all available DHO structures and their classification into known DHO types. Comparison of all the DHO active sites containing ligands that are listed in DrugBank was facilitated by a new interactive, structure-comparison and presentation platform. In addition, we examined the genetic context of characterized DHOs, which revealed characteristic patterns for different types of DHOs. We also generated a homology model for DHO from Plasmodium falciparum.


Assuntos
Di-Hidro-Orotase/química , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Vibrio cholerae/enzimologia , Yersinia pestis/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Di-Hidro-Orotase/genética , Genômica , Malatos/metabolismo , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
8.
Sci Rep ; 9(1): 7952, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138855

RESUMO

Regulation of gene expression through processing and turnover of RNA is a key mechanism that allows bacteria to rapidly adapt to changing environmental conditions. Consequently, RNA degrading enzymes (ribonucleases; RNases) such as the endoribonuclease RNase E, frequently play critical roles in pathogenic bacterial virulence and are potential antibacterial targets. RNase E consists of a highly conserved catalytic domain and a variable non-catalytic domain that functions as the structural scaffold for the multienzyme degradosome complex. Despite conservation of the catalytic domain, a recent study identified differences in the response of RNase E homologues from different species to the same inhibitory compound(s). While RNase E from Escherichia coli has been well-characterised, far less is known about RNase E homologues from other bacterial species. In this study, we structurally and biochemically characterise the RNase E catalytic domains from four pathogenic bacteria: Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei and Acinetobacter baumannii, with a view to exploiting RNase E as an antibacterial target. Bioinformatics, small-angle x-ray scattering and biochemical RNA cleavage assays reveal globally similar structural and catalytic properties. Surprisingly, subtle species-specific differences in both structure and substrate specificity were also identified that may be important for the development of effective antibacterial drugs targeting RNase E.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Endorribonucleases/química , Francisella tularensis/enzimologia , Yersinia pestis/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Virulência , Yersinia pestis/genética , Yersinia pestis/patogenicidade
9.
Anal Chem ; 91(3): 2392-2400, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30580515

RESUMO

Molecular recognition between a receptor and ligand is a fundamental event in bioanalytical assays, which guarantees the sensitivity and specificity of an assay for the detection of the target of interest. An intensive understanding of the interaction mechanism could be useful for desirable hapten design, directed antibody evolution in vitro, and assay improvement. To illustrate the structural information on class-specific monoclonal antibodies (mAbs) and dihydropteroate synthase (DHPS) against sulfonamides (SAs) we have previously prepared, we initially measured the kinetic parameters of mAb 4C7, 4D11, and DHPS, which showed that the affinities of 4C7 and 4D11 were in the pM to µM range, while DHPS was uniformly in the µM range. Three-dimensional quantitative structure-activity relationship analysis for 4C7 and 4D11 then revealed that the contributions from the stereochemical structure and electron density of the SAs were comparable to binding with mAb. To acquire insights into the structural basis of mAbs and DHPS during the recognition process, the crystal structures of 4C7 and its complex with sulfathiazole were determined using X-ray crystallography. The results showed the SAs orientation and hydrogen bonding interactions mainly contributed to the diverse SAs-mAb affinities. However, for DHPS, a nucleophilic substitution reaction occurred during the recognition process with the SAs, which contributed to the surprisingly uniform affinity for all the SAs tested. This study verified the previous hypotheses on antibody production against SAs and enhanced our understanding of antibody-SAs interactions, which provided useful information toward the rational design of novel haptens and directed evolution to produce class-specific antibodies as DHPS.


Assuntos
Antibacterianos/metabolismo , Anticorpos Monoclonais/metabolismo , Di-Hidropteroato Sintase/metabolismo , Sulfonamidas/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Bacillus anthracis/enzimologia , Sítios de Ligação , Di-Hidropteroato Sintase/química , Escherichia coli/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfonamidas/química , Sulfonamidas/imunologia , Yersinia pestis/enzimologia
11.
Chem Commun (Camb) ; 54(64): 8838-8841, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027952

RESUMO

Beta-ketoacyl-ACP utilizing enzymes in fatty acid, polyketide and acyl-homoserine lactone biosynthetic pathways are important targets for developing antimicrobial, anticancer and antiparasitic compounds. Published reports on successful isolation of beta-ketoacyl-ACPs in a laboratory remain scarce to date and thus most beta-ketoacyl-ACP utilizing enzymes are routinely characterized using small molecule substrates in lieu of the bonafide 3-oxoacyl-ACPs. We report the systematic investigation into the electronic, geometric and spatial aspects of beta-ketoacyl-chain recognition to develop 3-oxoacyl-ACP substrate mimics for two beta-ketoacyl-ACP utilizing quorum signal synthases.


Assuntos
Proteína de Transporte de Acila/química , Proteínas de Bactérias/química , Ligases/química , Sondas Moleculares/química , Proteína de Transporte de Acila/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cinética , Ligases/antagonistas & inibidores , Sondas Moleculares/síntese química , Estrutura Molecular , Pantoea/enzimologia , Especificidade por Substrato , Yersinia pestis/enzimologia
12.
Bioorg Chem ; 76: 437-448, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275262

RESUMO

Development of new antimicrobial agents is a good solution to overcome drug-resistance problems. From this perspective, new quinoxaline derivatives bearing various bioactive heterocyclic moieties (thiadiazoles, oxadiazoles, pyrazoles and thiazoles) were designed and synthesized. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against nine bacterial human pathogenic strains using the disc diffusion assay. In general, most of the synthesized compounds exhibited good antibacterial activities. The thiazolyl 11c displayed significant antibacterial activities against P. aeruginosa (MIC, 12.5 µg/mL vs levofloxacin 12.5 µg/mL). Molecular docking studies indicated that the synthesized compounds could occupy both p-amino benzoic acid (PABA) and pterin binding pockets of the dihydropteroate synthase (DHPS), suggesting that the target compounds could act by the inhibition of bacterial DHPS enzyme. The results provide important information for the future design of more potent antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Di-Hidropteroato Sintase/antagonistas & inibidores , Desenho de Fármacos , Quinoxalinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/metabolismo , Domínio Catalítico , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Quinoxalinas/síntese química , Quinoxalinas/química , Quinoxalinas/metabolismo , Relação Estrutura-Atividade , Yersinia pestis/enzimologia
13.
Anal Biochem ; 542: 63-75, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180070

RESUMO

The rise of antibacterial resistance among human pathogens represents a problem that could change the landscape of healthcare unless new antibiotics are developed. The methyl erythritol phosphate (MEP) pathway represents an attractive series of targets for novel antibiotic design, considering each enzyme of the pathway is both essential and has no human homologs. Here we describe a pilot scale high-throughput screening (HTS) campaign against the first and second committed steps in the pathway, catalyzed by DXP reductoisomerase (IspC) and MEP cytidylyltransferase (IspD), using compounds present in the commercially available LOPAC1280 library as well as in an in-house natural product extract library. Hit compounds were characterized to deduce their mechanism of inhibition; most function through aggregation. The HTS workflow outlined here is useful for quickly screening a chemical library, while effectively identifying false positive compounds associated with assay constraints and aggregation.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antibacterianos/análise , Inibidores Enzimáticos/análise , Ensaios de Triagem em Larga Escala , Nucleotidiltransferases/antagonistas & inibidores , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Nucleotidiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/enzimologia
14.
Methods Mol Biol ; 1703: 259-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177747

RESUMO

Bacterial Topoisomerase I is a potential target for the identification of novel topoisomerase poison inhibitors that could provide leads for a new class of antibacterial compounds. Here we describe in detail a fluorescence-based cleavage assay that is successfully used in HTS for the discovery of bacterial topoisomerase Ι poisons.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Escherichia coli/enzimologia , Inibidores da Topoisomerase I/síntese química , Yersinia pestis/enzimologia , DNA Bacteriano/química , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Fluorescência , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Yersinia pestis/efeitos dos fármacos
15.
mBio ; 8(4)2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743813

RESUMO

The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.


Assuntos
Antibacterianos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Benzamidas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Morfolinas/uso terapêutico , Peste/tratamento farmacológico , Yersinia pestis/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Benzamidas/química , Benzamidas/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Bactérias Gram-Negativas/enzimologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Lipídeo A/biossíntese , Camundongos , Morfolinas/química , Morfolinas/farmacologia , Peste/microbiologia , Yersinia pestis/enzimologia
16.
Org Biomol Chem ; 15(26): 5593-5601, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28639657

RESUMO

Dihydropteroate synthase (DHPS) catalyzes the condensation of 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) with p-aminobenzoic acid (pABA) and is a well validated target for anti-malarial and anti-bacterial drugs. However, in recent years its utility as a therapeutic target has diminished considerably due to multiple mutations. As such, considerable structural biology and medicinal chemistry effort has been expended to understand and overcome this issue. To date no detailed computational analysis of the protein mechanism has been made despite the detailed crystal structures and multiple mechanistic proposals being made. In this study the mechanistic proposals for DHPS have been systematically investigated using a hybrid QM/MM method. We aimed to compare the energetics associated with SN1 and SN2 processes, whether the SN1 process involves a carbocation or neutral DHP intermediate, uncover the identity of the general base in the catalytic mechanism, and understand the differences in substrate vs. inhibitor reactivity. Our results suggest a reaction that follows an SN1 process with the rate determining step being C-O bond breaking to give a carbocation intermediate. Comparative studies on the inhibitor STZ confirm the experimental observations that it is also a DHPS substrate.


Assuntos
Di-Hidropteroato Sintase/antagonistas & inibidores , Di-Hidropteroato Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Sulfonamidas/farmacologia , Biocatálise , Di-Hidropteroato Sintase/química , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Teoria Quântica , Especificidade por Substrato , Sulfonamidas/química , Yersinia pestis/enzimologia
17.
Mol Cell ; 66(5): 672-683.e4, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575662

RESUMO

The AAA+ Lon protease is conserved from bacteria to humans, performs crucial roles in protein homeostasis, and is implicated in bacterial pathogenesis and human disease. We investigated how Lon selectively degrades specific substrates among a diverse array of potential targets. We report the discovery of HspQ as a new Lon substrate, unique specificity-enhancing factor, and potent allosteric activator. Lon recognizes HspQ via a C-terminal degron, whose precise presentation, in synergy with multipartite contacts with the native core of HspQ, is required for allosteric Lon activation. Productive HspQ-Lon engagement enhances degradation of multiple new and known Lon substrates. Our studies reveal the existence and simultaneous utilization of two distinct substrate recognition sites on Lon, an HspQ binding site and an HspQ-modulated allosteric site. Our investigations unveil an unprecedented regulatory use of an evolutionarily conserved heat shock protein and present a distinctive mechanism for how Lon protease achieves temporally enhanced substrate selectivity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico/metabolismo , Protease La/metabolismo , Yersinia pestis/enzimologia , Regulação Alostérica , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Choque Térmico/genética , Cinética , Protease La/genética , Ligação Proteica , Dobramento de Proteína , Proteólise , Especificidade por Substrato , Yersinia pestis/genética
18.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646112

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in Escherichia coli, Yersinia pestis, and Mycobacterium smegmatis Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.IMPORTANCE The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Endonucleases/metabolismo , Escherichia coli/genética , Mycobacterium smegmatis/genética , Recombinação Genética , Yersinia pestis/genética , Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Engenharia Genética , Mutação , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Yersinia pestis/enzimologia , Yersinia pestis/metabolismo
19.
J Biol Chem ; 292(24): 10002-10013, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28455448

RESUMO

Nonribosomal peptide synthesis involves the interplay between covalent protein modifications, conformational fluctuations, catalysis, and transient protein-protein interactions. Delineating the mechanisms involved in orchestrating these various processes will deepen our understanding of domain-domain communication in nonribosomal peptide synthetases (NRPSs) and lay the groundwork for the rational reengineering of NRPSs by swapping domains handling different substrates to generate novel natural products. Although many structural and biochemical studies of NRPSs exist, few studies have focused on the energetics and dynamics governing the interactions in these systems. Here, we present detailed binding studies of an adenylation domain and its partner carrier protein in apo-, holo-, and substrate-loaded forms. Results from fluorescence anisotropy, isothermal titration calorimetry, and NMR titrations indicated that covalent modifications to a carrier protein modulate domain communication, suggesting that chemical modifications to carrier proteins during NRPS synthesis may impart directionality to sequential NRPS domain interactions. Comparison of the structure and dynamics of an apo-aryl carrier protein with those of its modified forms revealed structural fluctuations induced by post-translational modifications and mediated by modulations of protein dynamics. The results provide a comprehensive molecular description of a carrier protein throughout its life cycle and demonstrate how a network of dynamic residues can propagate the molecular impact of chemical modifications throughout a protein and influence its affinity toward partner domains.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Coenzima A Ligases/metabolismo , Modelos Moleculares , Peptídeo Sintases/metabolismo , Modificação Traducional de Proteínas , Processamento de Proteína Pós-Traducional , Yersinia pestis/metabolismo , Substituição de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calorimetria , Isótopos de Carbono , Proteínas de Transporte/química , Proteínas de Transporte/genética , Coenzima A Ligases/química , Coenzima A Ligases/genética , Polarização de Fluorescência , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Cinética , Mutação , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular , Peptídeo Sintases/química , Peptídeo Sintases/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Titulometria , Yersinia pestis/enzimologia
20.
Cell Death Dis ; 7(12): e2519, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929533

RESUMO

Yersinia pestis uses type III effector proteins to target eukaryotic signaling systems. The Yersinia outer protein (Yop) M effector from the Y. pestis strain is a critical virulence determinant; however, its role in Y. pestis pathogenesis is just beginning to emerge. Here we first identify YopM as the structural mimic of the bacterial IpaH E3 ligase family in vitro, and establish that the conserved CLD motif in its N-terminal is responsible for the E3 ligase function. Furthermore, we show that NLRP3 is a novel target of the YopM protein. Specially, YopM associates with NLRP3, and its CLD ligase motif mediates the activating K63-linked ubiquitylation of NLRP3; as a result, YopM modulates NLRP3-mediated cell necrosis. Mutation of YopM E3 ligase motif dramatically reduces the ability of Y. pestis to induce HMGB1 release and cell necrosis, which ultimately contributes to bacterial virulence. In conclusion, this study has identified a previously unrecognized role for YopM E3 ligase activity in the regulation of host cell necrosis and plague pathogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas de Secreção Bacterianos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Yersinia pestis/enzimologia , Animais , Feminino , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Necrose , Peste/metabolismo , Peste/microbiologia , Peste/patologia , Ligação Proteica , Estabilidade Proteica , Ubiquitinação , Virulência , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...